Welcome to the Integrated Sensing Circuits and Systems (ISCS) Laboratory. We are part of the Electrical Engineering and Computer Science Department at South Dakota State University. Our lab is dedicated to pioneering research in integrated circuit (IC) design and embedded systems, with applications ranging from wireless communication to chemical and bio-sensing technologies.
Our research aims to advance integrated circuit and embedded system design, offering hands-on learning opportunities for both M.S. and Ph.D. students. As an established research group, our collaborative approach integrates cutting-edge technology with real-world applications, working towards innovative solutions for emerging challenges in smart farming, environmental sensing, and healthcare.
On this page, you'll find detailed information about our:
- Research focus and projects: Explore our current projects, dedicated to advancing the fields of IC design and embedded systems.
- Publications: Discover our contributions to academic journals and conferences.
- Team members: Meet the researchers driving innovation in our lab.
- Open positions: We regularly seek talented researchers to join our growing team.
Whether you’re interested in collaborating, joining the lab or just learning more about our work, we welcome you to explore and connect with us.
Current Research
Showcase Projects
Integrated Circuits
Embedded Systems
Publications
- S. Lakshminarayana, M. Ranganatha, H. Park, and S. Jung, “Trimodal Watch-Type Wearable Health Monitoring Device,” Applied Science, vol. 14, pp. 9267, 2024.
- L. Shang, S. Lu, Y. Zhang, S. Jung, and C. Pan, “Directed Acyclic Graph-Based Datapath Synthesis Using Graph Isomorphism and Gate Reconfiguration,” Chips, vol. 3, pp. 182-195, 2024.
- H. Park, Y. Sun, and S. Jung, “Balanced Resistive Matrix Array for High-density Electrochemical Sensor Array,” IEEE Sensors Journal, vol. 23, issue: 13, pp. 14323-14329, 2023.
- H. Park, L. Nguyen, S. Lakshminarayana, Y. Sun, and S. Jung, “Watch-Type Dual-Mode Wearable Health Device,” ECS Sensors Plus, vol. 2, no. 1, 2023.
- H. Park, Y. Park, S. Lakshminarayana, H. Jung, M. Kim, K. Lee, and S. Jung, “Portable All-in-One Electroanalytical Device for Point of Care,” IEEE Access, vol. 10, pp. 68700-68710, 2022.
- L. Shang, S. Jung, and C. Pan, “Fault-Aware Adversary Attack Analyses and Enhancement for RRAM-based Neuromorphic Accelerator,” Frontiers in Sensors, vol. 3, 2022.
- S. Lakshminarayana, Y. Park, H. Park, and S. Jung, “A Readout System for High Speed Interface of Wide Range Chemiresistive Sensor Array,” IEEE Access, vol. 10, pp. 45726-45735, 2022.
- H. Cho, F. Tong, S. You, S. Jung, W. Kim, and J. Kim, “Prediction of the Immune Phenotypes of Bladder Cancer Patients for Precision Oncology,” IEEE Open Journal of Engineering in Medicine and Biology, vol. 3, pp. 47-57, 2022.
- H. Park, S. Lakshminarayana, C. Pan, H. Chung, and S. Jung, “An Auto Adjustable Transimpedance Readout System for Wearable Healthcare Devices,” MDPI Electronics, vol. 11, issue. 8, 1181, 2022.
- S. Lakshminarayana, Y. Park, H. Park, and S. Jung, “High Density Resistive Array Readout System for Wearable Electronics,” MDPI Sensors, vol. 22, issue. 5, 1878, 2022.
- Z. Pei, A. Dutta, S. Jung, and C. Pan, “Interconnect Technology/System Co-Optimization for Low-Power VLSI Applications Using Ballistic Materials,” IEEE Transactions on Electron Devices, vol. 68, issue 7, pp. 3513-3519, 2021.
- Z. Pei, L. Shang, S. Jung, and C. Pan, “Deep Pipeline Circuit for Low-Power Spintronic Devices,” IEEE Transactions on Electron Devices, vol. 68 (4), pp. 1962-1968, 2021.
- S. Kim, J. Brady, F. Al-Badani, S. Yu, J. Hart, S. Jung, T. Tran, and N. Myung, “Nanoengineering Approaches Toward Artificial Nose,” Frontiers in Chemistry, vol. 9, pp. 1-29, 2021.
- H. Park, P. Jin, S. Jung, and J. Kim, “Quick overview of diagnostic kits and smartphone apps for urologists during the COVID-19 pandemic: a narrative review,” Translational Andrology and Urology, vol. 10 (2), pp. 939-953, 2021.
- P. Jin, H. Park, S. Jung, and J. Kim, “Challenges in Urology during the COVID-19 Pandemic,” Urologia Internationalis, vol. 105. No. 1-2, pp. 3-16, 2021.
- H. Park, S. Jung, and H. Chung, “An Analog Correlator Based CMOS Analog Front End with Digital Gain Control Circuit for Hearing Aid Devices,” Analog Integrated Circuits and Signal Processing, pp. 157-165, 2020.
- F. Tong, M. Shahid, P. Jin, S. Jung, W. Kim, and J. Kim, “Classification of the Urinary Metabolome using Machine Learning and Potential Applications to Diagnosing Interstitial Cystitis,” Bladder Journal, vol. 7 (2), pp. 1-7, 2020.
- H. Park, J. Kim, and S. Jung, “Development of Non-Invasive Biosensor Devices for the Detection of Bladder Cancer in Urine,” Clinical Oncology and Research, vol. 3 (6), pp. 1-4, 2020.
- S. Jung and J. Kim, “Biomarker Discovery and Beyond for Diagnosis of Bladder Diseases,” Bladder Journal, vol. 7(1), pp. 1-5, 2020.
- M. Chilukuri, S. Jung, and H. Chung, “A Charge Amplifier Based CMOS Analog Front End for Hearing Aid Devices,” Journal of Low Power Electronics, vol. 15, no. 3, pp. 315-322, 2019.
- N. V. Myung, S. Jung, and J. Kim, “Application of Low-cost, Easy-to-Use, Portable Biosensor Systems for Diagnosing Bladder Dysfunctions,” International Neurourology Journal, vol. 23, no. 1, pp 86-87, 2019.
- H. Park, N. D. Karandikar, S. Jung, and K. Ryoo, “Variable Gain Potentiostat Architecture for Glucose Sensing from Blood and Tear Fluid,” Journal of Low Power Electronics, vol. 13, no. 2, pp. 271-278, 2017.
- B. Arigong, H. Ren, J. Ding, H. Chung, S. Jung, H. Kim, and H. Zhang, “An Ultra-Slow-Wave Transmission Line on CMOS Technology,” Microwave and Optical Technology Letters, vol. 59, issue 3, pp. 604-606, 2017.
- N. Karandikar, S. Jung, Y. Sun, and H. Chung, “Low Power, Low Noise, Compact Amperometric Circuit for Three-Terminal Glucose Biosensor,” Journal of Analog Integrated Circuits and Signal Processing, vol. 82, issue 2, pp 417-424, 2016.
- C. Lim, S. Dermal, S. Jung, N. Myung, and K. Ryoo, “A Compact CMOS Electrochemical Sensor Readout Circuit for a Conductometric Sensor Array,” Journal of Low Power Electronics, vol. 10, pp. 635-639, 2014.
- B. Arigong, H. Zhang, S. Yoon, S. Jung, and H. Kim, “An Eye-Opening Measurement Circuit for a Feed-Forward Equalizer,” Microwave and Optical Technology Letters, vol. 56, issue 9, pp. 2136-2141, 2014.
- C. Lim, S. Govardhan, H. Kim, K. Ryoo, and S. Jung, “A CMOS Switched Capacitor Based Low Power Amperometric Readout Circuit for Microneedle Glucose Sensor,” Journal of Low Power Electronics, vol. 10, no. 2, pp. 279-285, 2014.
- V. Shenoy, S. Jung, Y. Yoon, Y. Park, and H. Chung, “A CMOS Analog Correlator based Painless Non-enzymatic Glucose Sensor Readout Circuit,” IEEE Sensors Journal, vol. 14, pp. 1591-1599, 2014.
- H. Kim, S. Woo, S. Jung, and K. Lee, “A CMOS transmitter leakage canceller for WCDMA applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, pp. 3373-3380, 2013. ISSN: 0018-9480
- B. Arigong, H. Zhang, S. Jung, and H. Kim, “A Feed-Forward Equalizer with Winner-take-all Variable Gain Amplifiers for Backplane Channels,” Microwave and Optical Technology Letters, vol. 55, no. 11, pp. 2666-2670, 2013.
- J. Li, S. Jung, H. Kim, P. Gui, and H. Chung, “A Carrier-Based CMOS Impulse Generator for Ultra-wideband Vehicular Radar Application,” Microwave and Optical Technology Letters, vol. 55, no. 8, pp. 1881-1887, 2013.
- Y. Joo, H. Kim, and S. Jung, “A CMOS 802.15.4a Transmitter for Sub-GHz Applications,” Microwave and Optical Technology Letters, vol. 53, no. 8, pp. 1919-1921, 2011.
- J. Li, S. Jung, and H. Moon, “A Fully Integrated 3-10 GHz IR-UWB CMOS Impulse Generator,” Microwave and Optical Technology Letters, vol. 53, no. 8, pp. 1887-1890, 2011.
- H. Zhai, S. Jung, and M. Lu, “Wireless Communication in Boxes with Metallic Enclosure based on Time-Reversal Ultra-Wideband Technique: a Full-Wave Numerical Study,” Progress In Electromagnetics Research, vol. PIER 101, pp. 63-74, 2010.
- N. Thakoor, J. Gao, and S. Jung “Embedded Planar Surface Segmentation System for Stereo Images,” Journal of Machine Vision and Applications, vol. 21, no. 2, pp. 189-199, 2010.
- H. Zhai, S. Sha, V. Shenoy, S. Jung, M. Lu, K. Min, S. Lee, and D. Ha, “An Electronic Circuit System for Time-Reversal of Ultra-Wideband Short Impulses based on Frequency Domain Approach,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 74-86, 2010.
- P. Ghosh, M. Lu, and S. Jung, “Design of a Radiation Hard Phase-Locked Loop at 2.5 GHz using SOS-CMOS,” Journal of Systems Engineering and Electronics, vol. 20, no. 6, pp. 1159-1166, 2009.
- M. Lu and S. Jung, “On the Well-Posedness of Integral Equations Associated with Cavity Green's Functions around Resonant Frequencies,” Microwave and Optical Technology Letter, vol. 51, no. 6, pp. 1476-1481, 2009.
- M. Lu, J. Bredow, S. Jung, S. Tjuatja, “Evaluation of Green’s Functions of Rectangular Cavities around Resonant Frequencies in the Method of Moments”, IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 204-208, 2009.
- N. Thakoor, J. Gao, and S. Jung “Hidden Markov model based weighted likelihood discriminant for 2D shape classification,” IEEE Transactions on Image Processing, vol. 16, Issue 11, pp. 2707-2719, 2007.
- D. Park, Y. Jeong, J-B. Lee, and S. Jung, “Chip-level integration of RF MEMS on-chip inductors using UV-LIGA technique,” Journal of Microsystem Technologies, vol. 14, numbers 9-11, pp. 1429-1438, 2007.
- G. Zhang, S. Saw, J. Liu, S. Sterrantino, D. K. Johnson, and S. Jung, “An Accurate Current Source with On-Chip Self-Calibration Circuits for Low-Voltage Current Mode Differential Drivers”, IEEE Transactions on Circuits and Systems I, vol. 53, Issue 1, pp. 40-47, 2006.
- S. Jung, M. A. Brooke, and N. M. Jokerst, “Parasitic Modeling and Analysis for a 1 Gb/s CMOS Laser Driver”, IEEE Transactions on Circuits and Systems II, Vol. 51, No. 10, pp. 517- 522, 2004.
- N.M. Jokerst, M. A. Brooke, J. Laskar, D. S. Wills, A. S. Brown, M. Vrazel, S. Jung, Y. Joo, J. J. Chang, “Microsystem optoelectronic integration for mixed multisignal systems”, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 6, Issue: 6, pp. 1231 –1239, 2000.
- S. W. Bond, O. Vendier, M. Lee, S. Jung, A. Lopez-Lagunas, S. Chai, G. Dagnall, M. Brooke, N. Jokerst, D. Wills, and A. Brown, “A Three Layer 3D System Using Through-Si Vertical Optical Interconnections and Si CMOS Hybrid Building Blocks,” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 5, No. 2, pp. 276 – 286, 1999.
- O. Vendier, S. W. Bond, M. Lee, S. Jung, M. Brooke, N. Jokerst, and R.P. Leavitt, “Stacked Silicon CMOS Circuits with a 40 Mb/s Through-Silicon Optical Interconnect,” IEEE Photonics Technology Letters, vol. 10, no. 4, pp. 606-608, 1998.
- L. Shang, S. Lu, S. Jung, Y. Zhang, and C. Pan, “A Novel Delay-Aware Packing Algorithm for FPGA Architecture Using RFET,” IEEE International Midwest Symposium on Circuits and Systems, August 2024.
- S. Lu, L. Shang, S. Jung, and C. Pan, “Emerging Reconfigurable Logic Device Based FPGA Design and Optimization,” International Symposium on Quality Electronic Design, April 2024.
- L. Shang, S. Lu, S. Jung, and C. Pan, “Novel Fence Generation Methods for Accelerating Reconfigurable Exact Synthesis,” IEEE International Midwest Symposium on Circuits and Systems, August 2023.
- S. Lu, Z. Pei, L. Shang, S. Jung, and C. Pan, “Technology/Circuit Co-Design Framework for Emerging Reconfigurable Devices,” IEEE International Midwest Symposium on Circuits and Systems, August 2023.
- H. Park, S. Lakshminarayana, L. Nguyen, C. Pan, and S. Jung, “Portable Indoor Air Quality Measurement System,” IEEE International Conference on E-Health and Bioengineering, October 2022.
- T. T. Huu Tran, H. Park, D. To, K. Gangadhara, J. Brady, J. Hart, S. Jung, and N. V. Myung, “A Multimodal Electronic Nose Based on High-Density Flexible Sensor Array of Carbon Nanotubes and Photoactive Macromolecules Hybrid Nanostructures,” 18th International Meeting on Chemical Sensors, Vol. MA2020-01, 2020.
- M. Chilukuri and S. Jung, “A Mixed-Mode Variable Gain Amplifier for Hearing Aid Devices,” IEEE Dallas Circuits and Systems Conference, November 2018.
- M. Chilukuri, S. Jung, and K. Ryoo, “A Low Power and Low Noise Preamplifier Circuit for Hearing Aid Devices,” IEEE Dallas Circuits and Systems Conference, October 2016.
- U. Mahendran, S. Jung, K. Ryoo, and S. Pyo, “A Switched Capacitor based Transimpedance Amplifier for Detection of HAB using an Optical Sensor,” IEEE Dallas Circuits and Systems Conference, October 2016.
- M. Chilukuri, and S. Jung, “A High Frequency Memristor Emulator Circuit,” IEEE Dallas Circuits and Systems Conference, pp. 1-4, October 2015.
- H. Zamankhan, S. Jung, S.-Y. Cho, J.-M. Park, H. Choi, “Comparison between Various Observing Systems for Monitoring Harmful Algal Blooms and Preliminary Concept of Innovative Sensing Network for In-Situ Monitoring of Biological Toxins”, Special Symposium on Advances in Sensing Technologies for Real-Time and Remote Monitoring of Water Quality, The 250th American Chemical Society (ACS) National Meeting, August 2015.
- H. Zamankhan, S. Jung, H. Choi, “In Situ Monitoring of Biological Toxins in Harmful Algal Blooms: Sensing Network Demonstration”, at Texas Water 2014, April 2014.
- H. Z. Malayeri, S. Jung, and H. Choi, “In situ monitoring of microcystins for the evaluation of harmful algal blooms,” 247th ACS National Meeting and Exposition, March 2014.
- V. Shenoy, S. Jung, K. Ryoo, and H. Kim, “A 24 GHz Low Noise Amplifier for Short Range UWB Automotive Radar,” IEEE Texas Symposium on Wireless & Microwave Circuits & System, April 2013.
- S. Raavi, B. Arigong, R. Zhou, S. Jung, M. Jin, H. Zhang, and H. Kim, “An Optical Wireless Power Transfer System for Rapid Charging,” IEEE Texas Symposium on Wireless & Microwave Circuits & System, April 2013.
- H. Kim and S. Jung, “Dual-Band Class-E RF PA Design utilizing Complex Impedance Transformers,” IEEE Texas Symposium on Wireless & Microwave Circuits & System, April 2013.
- J. LI, S. Jung, Y. Joo, and P. Gui, “A Current-Steering DAC-Based CMOS Ultra-Wideband Transmitter with Bi-Phase Modulation,” IEEE ISCAS, pp. 2545-2548, May 2012.
- S. Koppa, D. Park, Y. Joo, and S. Jung, “A 105.6dB DR and 65dB Peak SNR Self-Reset CMOS Image Sensor Using a Schmitt Trigger Circuit,” IEEE MWSCAS, pp. 1-4, August 2011.
- V. Shenoy, D. McBride, and S. Jung, “A High Fill-Factor High-SNR CMOS Image Sensor for IR Camera Applications,” Proc. of SPIE, vol. 8012, 80120J, April 2011.
- J. Li, S. Jung, M. Lu, and K. Min, “A CMOS Ultra-Wideband Transmitter with Bi-Phase Modulation for 22-29 GHz Vehicular Radar Application,” IEEE MWSCAS, pp. 449-452, August 2010.
- N. Karandikar, S. Jung, P. Gui, and Y. Joo, “Design of an Analog Correlator for 22-29GHz UWB Vehicular Radar System Using Improved High Gain Multiplier Architecture,” IEEE MWSCAS, pp. 930-933, August 2010.
- H. Kim, Y. Joo, and S. Jung, “Analytical Model of Pulse Combined UWB Pulse Generator,” IEEE International Symposium on Communication and Information Technology, pp. 1413-1418, September 2009.
- J. Li, S. Jung, M. Lu, P. Gui, and Y. Joo, “A Current-Steering DAC-Based CMOS Ultra-Wideband Impulse Generator,” IEEE International Symposium on Communication and Information Technology, pp. 971-975, September 2009.
- H. Kim, Y. Joo, and S. Jung, “A Tunable Pulse Generator for Sub-GHz UWB Systems,” IEEE MWSCAS, pp. 292-296, August 2009.
- P. Zhu, W. Chen, D. Wu, P. Gui, S. Jung, “A TID Tolerant, Wide Band and Low Jitter Phase-Locked Loop in 0.25um CMOS Silicon-on-Sapphire Technology”, IEEE Nuclear and Space Radiation Effects (NSREC), presented, July 2009.
- J. Li, M. Lu, S. Jung and K. Min, “A CMOS Ultra-Wideband Impulse Generator for 22-29 GHz Automotive Radar Applications,” IEEE Radar Conference, pp. 1-4, May 2009.
- S. Sha, V. Shenoy, M. Lu, S. Jung, K. Min, and S. Lee, “A Hardware Architecture for Time Reversal of Short Impulses based on Frequency Domain Approach,” Proc. of SPIE, Vol. 7308, pp. 73080T-1-73080T-9, April 2009.
- V. Shenoy, S. Sha, S. Jung, and M. Lu, “A Circuit Implementation for Time-Reversal of Short Impulses,” IEEE Asia-Pacific Microwave Conference, pp. 1-4, December 2008.
- T. Merkin, J.C. Li, S. Jung, M. Lu, J. Gao, and S. Lee, “A 100-960 MHz CMOS Ultra-Wideband Low Noise Amplifier, IEEE Midwest Symposium on Circuits and Systems, pp. 141-144, August 2008.
- V. Shenoy, P. Kalkura, S. Jung, M. Lu, J. Gao, and S. Lee, “A Dual Slope based Pulse Position Modulation for sub-GHz IR-UWB Systems,” IEEE Midwest Symposium on Circuits and Systems, pp. 846-849, August 2008.
- M. Lu, J. W. Bredow, S. Jung, and S. Tjuatja, “On the Well-Posedness of Integral Equations Associated with Cavity Green’s Functions around Resonant Frequency,” IEEE AP-S International Symposium on Antennas and Propagation, pp. 1-4, July 2008.
- N. Thakoor, J. Gao, and S. Jung, "Real time planar surface segmentation in disparity space," IEEE Workshop on Embedded Computer Vision, pp. 1-8, June 2007.
- M. Lu, J. Bredow, S. Jung, and S. Tjuatja, “Theoretical and Experimental Study of a Quasi-Planar Conical Antenna,” IEEE International Symposium on Antenna and Propagation, pp. 4777-4780, June 2007.
- M. Lu, J. Bredow, S. Jung, and S. Tjuatja, “On the Resonant Singularities Associated with the Green’s Functions of Metallic Rectangular Cavities in the Context of the Method of Moments,” IEEE International Symposium on Antenna and Propagation, pp. 2793-2796, June 2007.
- M. Lu, N.-W. Chen, J. Bredow, S. Jung, and S. Tjuatja, “Study of Photonic Crystals at Millimeter Wave Band,” IEEE International Symposium on Antenna and Propagation, pp. 177-180, June 2007.
- V. Shenoy, H. Shanmugasundaram, S. Jung, J. Gao, and Y. Joo, “CMOS Optical Transimpedance Amplifier Design for PAM Application,” IASTED, pp. 70-73, November 2006.
- T. Merkin, S. Jung, J. Gao, and Y. Joo, “A CMOS Ultra-Wideband Differential Low Noise Amplifier,” IEEE Asia-Pacific Microwave Conference, pp. 417-420, December 2006.
- N. Thakoor, J. Gao, and S. Jung, "Detecting occlusion for hidden Markov modeled shapes," Proc. IEEE International Conference on Image Processing, pp. 945-948, October 2006.
- H. Kim, Y. Joo, and S. Jung, “A Tunable CMOS UWB Pulse Generator,” IEEE Conference on Ultra Wideband, pp.109-112, September 2006.
- T. Merkin, S. Jung, S. Tjuatja, Y. Joo, D. Park, and J-B Lee, “An Ultra-Wideband Low Noise Amplifier with Air-suspended RF MEMS Inductors,” IEEE Conference on Ultra Wideband, pp. 459-464, September 2006.
- S-C. Chang, S. Jung, S. Tjuatja, J. Gao, and Y. Joo, “A CMOS 5th Derivative Impulse Generator for an IR-UWB Transmitter,” IEEE MWSCAS, vol. 2, pp. 376-380, August 2006.
- N. Thakoor, J. Gao, and S. Jung, "Occlusion resistant shape classifier based on warped optimal path matching," IEEE International Conference on Pattern Recognition, pp. 60-63, August 2006.
- D. Maxwell, S. Jung, Y. Joo, J. Gao, and H. Doh, “A Two-Stage Cascode CMOS LNA for UWB Wireless Systems”, IEEE Midwest Symposium on Circuits and Systems, pp. 627-630, August 2005.
- H. Kim, S. Jung, and Y. Joo, “Digitally Controllable Bi-Phase CMOS UWB Pulse Generator,” IEEE International Conference on Ultra-Wideband, pp. 442-445, September 2005.
- N. Thakoor, J. Gao, S. Jung, “Generalized Probabilistic Decent Method based Minimum Error Shape Classification using Hidden Markov Models,” IEEE ICME, pp. 342-345, July 2005.
- J. Gao, N. Thakoor, and S. Jung, “A Motion Field Reconstruction Scheme for Smooth Boundary Video Object Segmentation,” IEEE International conference on image processing (ICIP), Vol. 1, pp. 381-384, October 2004.
- H. Liu, X. Lin, Y. Kim, J. Liu, and S. Jung, “Electronic Dispersion compensation for 10 Gbps Data Transmission over Multi-mode Fibers,” IEEE Dallas CAS Workshop, pp. 159-162, September 2004.
- S. Jung, J. Gao, and J. Liu, "CMOS Multi-level Signal Transmitter for Optical Communication," IEEE Midwest Symposium on Circuits and Systems 2004, pp. II-185 – II-188, July 2004.
- Y. Jeong, H. Doh, S. Jung, D. Park, and J. Lee, "CMOS VCO & LNA Implemented by Air-Suspended On-Chip RF MEMS LC," IEEE Midwest Symposium on Circuits and Systems, pp. I-373 – I-376, July 2004.
- H. Doh, Y. Jeong, S. Jung, and Y. Joo, "Design of CMOS UWB Low Noise Amplifier with Cascode Feedback," IEEE Midwest Symposium on Circuits and Systems 2004, pp. II-641 – II-644, July 2004.
- S. Nazar, B. A. Shirazi, and S. Jung, “Performance/Energy efficiency analysis of register files in superscalar processors”, The International Conference on VLSI, pp. 325 – 331, June 2004.
- S. Vishwakarma, S. Jung, Y. Joo, “Ultra Wideband CMOS Low Noise Amplifier with Active Input Matching,” IEEE Conference on Ultra Wideband Systems and Technologies, pp 415 – 419, May 2004.
- Y. Jeong, J. Liu and S. Jung, “A CMOS Impulse Generator for UWB Wireless Communication System,” Proceedings of 2004 IEEE International Symposium on Circuit and Systems, pp. IV-129 – IV-132, May 2004.
- D.L. Geddis, S.R. Hyun, J. Chang, S. Jung, M.A. Brooke, N.M. Jokerst, “Single fiber Bi-directional links using 3D stacked thin film emitters and detectors integrated onto CMOS transceiver circuits”, IEEE Conference on Lasers and Electro-Optics, Vol. 2, pp. 270-271, May 2004.
- G. Zhang, J. Liu, and S. Jung, “An accurate current source with on-chip self-calibration circuits for low-voltage differential transmitter drivers”, IEEE International Symposium on Circuits and Systems, Vol. 2, pp. II-192 -II-195, May 2003.
- S. Jung, M. A. Brooke, and N. M. Jokerst, “Packaging Considerations for a 1 Gbps Si CMOS Optical Driver,” IEEE LEOS Annual Meeting, November 2000.
- N.M. Jokerst, M.A. Brooke, J. Laskar, D.S. Wills, A.S. Brown, O. Vendier, S. Bond, M. Vrazel, R. Huang, M. Thomas, H. Kuo, S. Cho, S. Jung, Y.J. Joo, J.J. Chang, “Smart photonic links: Optoelectronics devices integrated with circuits and interconnection substrates,” Digest of the Optical Society of America Annual Meeting, pp. 94, October 2000.
- N.M. Jokerst, M.A. Brooke, J. Laskar, D.S. Wills, A.S. Brown, O. Vendier, S. Bond, J. Cross, M. Vrazel, M. Thomas, M. Lee, S. Jung, Y.J. Joo, J.J. Chang, “Smart photonics: Optoelectronics integrated with Si CMOS VLSI circuits,” Proceedings of the SPIE Special Symposium on the Future of Computing, Vol. 4109, pp. 241-251, July 2000.
- J. Chang, S. Jung, M. Vrazel, K. Jung, M. Lee, M. A. Brooke, N. M. Jokerst, and S. Wills, “Mixed Signal Hybrid OEICs: An InP I-MSM Integrated Onto a Mixed Signal CMOS Analog Optical Receiver with a Digital CMOS Microprocessor,” Proceedings of the Optics in Computing Conference, May 2000.
- J. Chang, S. Jung, M. Vrazel, K. Jung, M. A. Brooke, and N. M. Jokerst, “Hybrid Optically Interconnected Microprocessor: An InP I-MSM Integrated Onto a Mixed Signal CMOS Analog Optical Receiver with a Digital CMOS Microprocessor,” Proceedings of the SPIE, Vol. 4089, pp. 708-714, 2000.
- N.M. Jokerst, M.A. Brooke, J. Laskar, D.S. Wills, A.S. Brown, O. Vendier, S. Bond, J. Cross, M. Vrazel, M. Thomas, M. Lee, S. Jung, Y.J. Joo, J.J. Chang, “Smart photonics: Optoelectronics integrated onto Si CMOS circuits,” IEEE Lasers and Electro-Optics Society 12th Annual Meeting, Vol. 2, pp. 423-424, November 1999.
- J. Chang, M. Lee, S. Jung, M. Brooke, N. Jokerst, and D. Wills, “Fully Differential Current-Input CMOS Amplifier Front-End Suppressing Mixed Signal Substrate Noise for Optoelectronic Applications,” IEEE International Symposium on Circuits and Systems, vol. 1, p. 327-330, June 1999.
- S. W. Bond, S. Jung, O. Vendier, A. Lopez-Lagunas, S. Chai, G. A. Dagnall, M. Brooke, N. Jokerst, D. Wills, and A. Brown, “3D Stacked Si CMOS VLSI Smart Pixels using Through-Si Optoelectronic Interconnections,” Technical Digest IEEE LEOS Summer topical meeting, pp. 27-28, July 1998.
Lab Members
Principal Investigator
Dr. Sungyong Jung
Department head and professor, McComish Department of Electrical Engineering and Computer Science, SDSU
Dr. Sungyong Jung received his Ph.D. in Electrical and Computer Engineering from the Georgia Institute of Technology, specializing in CMOS optical transceiver circuit design. After graduation, he worked at Quellan Inc. to improve spectral efficiency as an advanced circuit engineer. Currently, he is leading the Integrated Sensing Circuits and Systems (ISCS) Laboratory at South Dakota State University. His research interests include:
- Integrated Circuits and Embedded Systems for bio and chemical sensing.
- RF IC Design, Analog and Mixed-Signal IC Design.
- Applications in smart farming, hearing aids and environmental sensing.
Dr. Jung also serves as an associate editor for the Sensor Device and Sensor Network sections in Frontiers in Sensors, as well as IEEE Access, contributing to the advancement of sensor technology.
Team Members
- Dr. Shanthala Lakshminarayan
Post-doctoral researcher
Expertise in sensing systems and embedded research. - Manu Chilukuri
Ph.D. candidate
Focused on analog integrated circuit design. - Liem Nguyen
Ph.D. candidate
Specializes in sensing embedded systems, mobile applications, and CMOS analog front-end IC. - Moditha Reddy
Ph.D. candidate
Researches GUI development and embedded systems in conjunction with machine learning. - Navya Joy
Ph.D. candidate
Developing technologies for embedded sensor applications in bio and chemical areas.
Alumni
- Hyusim Park - Oklahoma State University
- Niranjan Karandikar - Intel
- Shaoshu Sha - Motorola
- Varun Shenoy - ON Semiconductor
- Ju-Ching Li - Synopsys
- Partha Ghosh - AMD
- Hector Macedo - Trusted Semiconductor Solutions
- Pallavi Bharoliya - Abbott
- Karthik Gangadhara - Microsoft
- Revathy Perumalsamy - Texas Instruments
- Roopsagar Palla - Inphi
- Manu Chilukuri - ams OSRAM
- Uthra Mahendran - STMicroelectronics
- Sunil Govardhan - Freescale
- Sujith Dermal - Qualcomm
- David Maxwell - Texas Instruments
- Ruddhi Chaphekar - Nvidia
- Ritesh Mehta - Broadcom
- Prasanna Kalkura - Apple
- Timothy Merkin - Texas Instruments
- Hemalatha Shanmugasundaram - Intel
- Tamim B. Al-sawaf - Schlumberger
- Shahzad Nazar - Apple
- YoungKyun Jeong - Samsung
- Daniel McBride
- Shin-Chih Chang
Open Positions
Post Doctoral Candidate
ISCS has an open position for a postdoctoral researcher in the area of analog integrated circuit and embedded system. The candidate will work on research projects related to smart farming applications. The candidate is expected to lead the project and supervise a PhD student. The preferred education and experience are as follows:
- A Ph.D. in electrical engineering or related areas.
- Analog and digital integrated circuit design.
- System level design.
- Digital signal processing, including machine learning.
- Good communication and writing skills in English.
If you are interested in this position, please apply by sending your CV to Dr. Sungyong Jung. This position will be open until it is filled.
Ph.D. Candidate
ISCS has open positions for Ph.D. candidates in analog/digital/RF integrated circuit design or embedded system design. The related research involves developing sensing system-on-a-chip and sensing systems in printed circuit boards for bio and chemical applications using electrochemical sensing and optical sensing techniques. The preferred experiences and skills are as follows:
1. Analog/Digital/RF Integrated Circuit Design
- Good understanding of fundamental circuit concepts.
- Analog, RF or digital circuit design experiences.
- Experience with Cadence design tools, ADS and HFSS.
2. Embedded System Design
- Good understanding of microcontrollers and embedded systems.
- Proficiency in Python and embedded C languages.
- Graphic user interface design.
- Experience with printed circuit design software.
- Signal processing (machine learning).
If you are interested of these positions, please apply by sending your CV to Dr. Sungyong Jung. These positions will be open until they are filled.